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1. Introduction

D-branes in models with N = (2, 2) worldsheet supersymmetry have been discussed in

recent years from various points of view. Prominent examples for such theories include

non-linear sigma-models whose targets are Kähler manifolds, Gepner models and Landau-

Ginzburg models. Boundary conditions can be formulated in terms of the N = (2, 2)

supersymmetry algebra, and one is usually interested in boundary conditions that preserve

half of the supersymmetry. As is well known, there are two different classes of such su-

persymmetry preserving boundary conditions, which are related by mirror symmetry and

are called A-type and B-type. In the non-linear sigma-model, A-type boundary conditions

correspond to D-branes wrapping (special) Lagrangian cycles, whereas B-type boundary

conditions describe holomorphic branes [1]. In the Gepner model, which provides a rational

conformal field theory description in the small volume regime of certain Calabi-Yau com-

pactifications, A-type and B-type D-branes can be constructed as explicit boundary states

with appropriate gluing conditions for the generators of the symmetry algebra. Finally,

in the Landau-Ginzburg model, A-type D-branes correspond to Lagrangian submanifolds

that are mapped by the superpotential to straight lines [2, 3], whereas B-type D-branes can

be described in terms of matrix factorisations of the superpotential. The study of matrix

factorisations was initiated in this context by Kontsevich, who proposed that there is a

B-type D-brane for any factorisation of the superpotential W (xi) = E(xi)J(xi) in terms

of matrices E and J with polynomial entries. One then associates a BRST operator of the

form

Q =

(
0 J

E 0

)
(1.1)

to this factorisation and determines the (topological) open string spectrum as the BRST

cohomology of this operator [4 – 9].

In this paper, we shall analyse supersymmetric D-branes on K3 surfaces using matrix

factorisation and conformal field theory techniques. K3 surfaces are special since they

actually preserve N = (4, 4) supersymmetry, not just N = (2, 2). The relation between

the geometrical and conformal field theory description of closed strings on K3 has been

analysed in some detail in [10]; here we shall concentrate mainly on open strings. A-type

and B-type boundary conditions can be formulated as usual once a particular N = 2

subalgebra is chosen. Geometrically, all supersymmetric D-branes are holomorphic with

respect to some complex structure. For a given complex structure, on the other hand,

not all of these D-branes are holomorphic and the spectrum of holomorphic D-branes thus

depends on the actual point in moduli space. One expects to find D0 and D4 branes at

any point in moduli space, but the rank of the Picard lattice, that determines the number

of holomorphic curves and hence D2 branes, varies.

An explicit conformal field theory description of string theory on K3 is only available

at rather specific points in the moduli space, but the matrix factorisation description is,

in principle, available for a much larger subspace of the moduli space. Thus the latter

approach is very well suited to study the spectrum of B-type D-branes for generic points

in the moduli space. In this paper we shall study some aspects of matrix factorisations
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for K3s that can be described as hypersurfaces in weighted projective space, where we

restrict to the case of Fermat type polynomials and their perturbations. At the maximally

symmetric point, string theory on this surface has a conformal field theory description in

terms of a Gepner model.

At this Gepner point we can easily construct factorisations by tensoring the usual single

factor and the permutation factorisations together.1 We can then analyse how these B-type

D-branes can be deformed as one perturbs the superpotential. For certain factorisations (in

particular, the tensor product factorisation and single transposition factorisations) we will

be able to show that they can be extended over the whole moduli space of deformations.

This can be done very explicitly by writing down the corresponding factorisations for

arbitrarily deformed superpotentials (see section 3). This result has a very nice geometrical

interpretation: these factorisations account precisely for those holomorphic D2-branes that

come from the embedding space or from resolving singular points of the embedded manifold,

and are generically present for K3s that arise as hypersurfaces in weighted projective space.

On the other hand, we can also prove that certain factorisations cannot be deformed.

This can be shown by studying the infinitesimal deformations following [12, 53]. In particu-

lar, we shall show that a necessary condition for a deformation not to be obstructed is that

the brane is uncharged under the RR ground state corresponding to the deforming poly-

nomial. The fact that factorisations are generically obstructed is also in good agreement

with the geometrical results.

In order to compare these results with what can be analysed in conformal field theory

we can make use of the fact that there is an interesting subspace of the moduli space of

such K3 surfaces for which we have an explicit conformal field theory description. Indeed,

the deformations of the quartic surface in P3 by two particular bulk fields

x4
1 + x4

2 + x4
3 + x4

4 + ax2
1x

2
2 + bx2

3x
2
4 = 0 (1.2)

describes [13] the 2-parameter space of toroidal Z4 orbifold K3s. For this subspace of the

moduli space one should thus be able to relate the different matrix factorisations with

explicit conformal field theory constructions of D-branes; this will be done in section 4.

In the orbifold description it is straightforward to see that the space of B-type RR

charges is 22-dimensional for any choice of the orbifold parameters a and b,2 and it is in

principle not difficult to construct the relevant D-branes in the orbifold conformal field

theory. On the matrix factorisation side it is likewise not difficult to construct the relevant

22 factorisations that account for all of these charges at the Gepner point (where a = b = 0).

However, we can show that not all of them can be extended to arbitrary a, b. In fact,

given our general results about obstructions, it is clear that for the factorisations that are

charged under the RR ground states corresponding to x2
1x

2
2 or x2

3x
2
4 this will not be possible.

1Unlike the situation for 3d Calabi-Yau’s [11] these factorisations do not in general account for all B-type

RR charges. This is a consequence of the fact that for K3 the middle dimensional cycles are 2-dimensional.

Given the relation between matrix factorisations and geometry, one should thus not expect to obtain the

charges of all holomorphic 2-cycles by these constructions.
2The relation between the two theories involves mirror symmetry. These D-branes are therefore A-type

from the point of view of the orbifold theory.
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Furthermore, we can show that this is the only real obstruction: we have identified a set

of factorisations that account for 20 RR charges and that can be extended for arbitrary a

and b.

This apparent obstruction has in fact a very nice interpretation in terms of the orbifold

conformal field theory. At least some of the relevant D-branes that carry these charges

stretch diagonally across the two T 2s at 45 degrees. Varying the parameters a and b

corresponds then to changing the radii of the two tori (as well as switching on a B-field).

The structure of the 45 degree D-brane3 then depends crucially on the relative radii: if

their ratio is rational, the brane will have finite length, but it will wind infinitely many

times around the torus if the ratio is irrational [14]. Thus the boundary state depends in

a very discontinuous manner on the parameters of the closed string theory. (This is also

familiar from the analysis of the N = 0 and N = 1 D-branes on a single circle [15 – 17].)

This explains why the corresponding matrix factorisation description cannot depend on

the deformation parameters in a simple analytic way.

The paper is organised as follows. In section 2 we review some background material

about D-branes on K3 surfaces from a geometric point of view. In particular, we describe

how the rank of the Picard lattice is always at least 1 for K3 surfaces that are embedded in

weighted projective space. In section 3 we briefly review the matrix factorisation approach

to D-branes in Landau Ginzburg models. We then discuss the behaviour of D-branes

under bulk perturbations in this language, and explain, in particular, how the generic

rank of the Picard lattice can be understood from this perspective. We also study the

quartic in P3 and the above deformations in detail. Finally, in section 4 we discuss the

orbifold theory T 4/Z4 and its D-branes. We explain some parts of the correspondence

between the boundary states of the orbifold theory and the matrix factorisations of the

Landau-Ginzburg description. Finally we study their deformations in the orbifold theory

and explain why certain deformations are obstructed. We have included an appendix in

which some of the more technical aspects of the orbifold description and its dictionary to

the Gepner model are explained in detail.

2. BPS D-branes on K3 surfaces

Let us begin by explaining some generalities about D-branes on K3 surfaces [1, 18, 19]. On

K3 we are in the special situation that there is extended N = (4, 4) supersymmetry. The

N = 4 algebra is an extension of the usual N = 2 superconformal algebra, where the u(1)

current of the N = 2 theory is enhanced to an ŝu(2)1 algebra; the additional generators

are the spectral flow operators (by one unit), which have conformal weight 1 for c = 6.

From the point of view of the extended N = (4, 4) symmetry there is therefore some

freedom in how to choose the u(1) generator of the N = 2 algebra inside the ŝu(2)1 algebra

of the N = 4 algebra. This is precisely the freedom of choosing a Cartan torus for the SU(2)

group. Each N = 2 subalgebra determines uniquely an u(1) subalgebra of the ŝu(2)1, but

3One may also consider modifying the angle with which the D-brane stretches across the tori. However,

the resulting D-brane will then typically not satisfy the correct N = 2 gluing conditions any more.
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the converse is not true [13, 21]. Once we have identified in addition a particular N = (2, 2)

subalgebra, we can formulate A and B type boundary conditions as usual. However, it is

clear that the distinction between A-type and B-type branes depends on the choice of the

particular N = (2, 2).

Mirror symmetry corresponds algebraically to flipping the sign of the u(1) current of

the left moving supersymmetry algebra. Obviously, this operation requires that a particular

N = (2, 2) structure has been picked. The mirror operation can then be viewed as a rotation

of the Cartan torus (for the left movers).

Geometrically, a K3 surface S is a hyperkaehler manifold with H2(S, Z) = 22. With

respect to the usual intersection product, the resulting lattice is even and self-dual, and

has signature (+)3, (−)19. A hyperkaehler structure is determined by the positive 3-plane

spanned by the periods of the three hyperkaehler forms in that lattice. Once a compatible

complex structure is chosen, this three-plane has an orthogonal decomposition into the

line generated by ω (the Kaehler form), and the plane spanned by the real and imaginary

components of the holomorphic 2-form Ω = x+iy. A change of complex structure amounts

to rotating the 2-plane spanned by the vectors x, y. In the context of string theory, the

moduli space contains in addition the B-field, and the full moduli space takes the form of

a Grassmannian parametrising 4-planes in R
4,20. A decomposition of the positive 4-plane

into two orthogonal 2-planes then amounts to fixing the complex structure, a Kaehler class

and a B-field. In [20], the four 2-forms (three hyperkaehler forms and the B-field) have

been combined into a single quaternionic 2-form. Mirror symmetry, which interchanges

the complex structure with the complexified Kaehler structure, acts in this language as a

quaternionic rotation of the positive 4-plane.

Comparing with the conformal field theory description, the choice of a decomposition of

the positive 4-plane into two perpendicular 2-planes amounts to the choice of an N = (2, 2)

subalgebra inside the N = (4, 4). The two SU(2) enhancing the N = (2, 2) to N = (4, 4)

can be understood as the freedom to rotate the two 2-planes.

Geometrically, B-type D-branes correspond to holomorphic branes, whereas A-type

branes wrap (special) Lagrangian submanifolds. In the case of K3, B-type branes can

have dimension 0, 2, 4, whereas A-type branes are always 2-dimensional. Some of the 22

2-cycles will thus be wrapped by A-type branes, and some by B-type branes, but the

decomposition into A-type and B-type branes depends, of course, on the chosen com-

plex structure. For example, the quaternionic rotation that induces mirror symmetry

exchanges holomorphic and Lagrangian cycles. The action of mirror symmetry on the

D-branes can also be understood from the point of view of [24], where mirror symme-

try was formulated for elliptic fibrations with a section as T-duality on the fiber. In the

K3 context, this point of view has been used to extend mirror symmetry to the open

string sector in [25]. Homological mirror symmetry has been proven for the quartic surface

in [26].

2.1 B-type branes and the Picard lattice

As we have explained above, supersymmetric 2-cycles on K3 are holomorphic curves with

respect to some complex structure. If a 2-cycle is holomorphic with respect to a given

– 5 –



J
H
E
P
0
6
(
2
0
0
6
)
0
1
5

complex structure, it can be wrapped by a D-brane that is B-type with respect to the

corresponding N = (2, 2) subalgebra. In the following we review some background material

from [27].

The 2-cycles are naturally elements of H2(S, Z), or, using duality, of H2(S, Z). Holo-

morphicity imposes that the dual 2-form is in fact in H1,1(S), and the Picard lattice is

thus

Pic(S) = H2(S, Z) ∩ H1,1(S) . (2.1)

The rank of the Picard lattice is usually denoted by ρ. Generically, K3 surfaces will

have ρ = 0, meaning that no B-type 2-branes are compatible with the given holomorphic

structure. However, in this paper we will always consider special geometric points at which

the rank of the Picard lattice is enhanced or even maximal.

We are particularly interested in the case where S is a hypersurface described by a Fer-

mat polynomial in a weighted projective space. In such a case, there is a correspondence [28]

between the non-linear sigma model on the hypersurface and the Landau Ginzburg model

with a superpotential that formally equals the polynomial appearing in the hypersurface

equation. To be more precise, the hypersurface in P(w1,w2,w3,w4)[H], with H =
∑

wi

xk1+2
1 + xk2+2

2 + xk3+2
3 + xk4+2

4 = 0 , (2.2)

where ki + 2 = H/wi, H = lcm{ki + 2}, corresponds to the Landau Ginzburg orbifold

model with superpotential

W = xk1+2
1 + xk2+2

2 + xk3+2
3 + xk4+2

4 . (2.3)

In this equation the xi denote chiral superfields of charge qL = qR = 1/(ki + 2); our nota-

tion will not distinguish between the chiral fields of the Landau-Ginzburg model and the

coordinates of the projective space in the geometric description. The orbifold ZH acts by

phase multiplication on the chiral superfields xi 7→ e
2πi

ki+2 xi; this orbifold projects onto inte-

ger U(1) charges of the theory. Altogether, there are 14 different examples corresponding

to Fermat polynomials in weighted projective space, which we list in table 1. These models

also have a description in terms of rational conformal field theory, namely as the tensor

product of 4 N = 2 minimal models at levels ki, modulo an integer charge projection ZH .

In terms of conformal field theory, it is straightforward to see that the space of B-type RR

charges is 22-dimensional for each of these models. By standard conformal field theory

arguments one should therefore expect that the corresponding B-type D-branes exist, and

thus that the rank of the Picard lattice is maximal for all of these points.

The condition that S can be written as a hypersurface in weighted projective space

imposes constraints on the allowed complex structure deformations, and thus increases the

generic rank of the Picard lattice [27]. For example, in the case of the quartic in P3

x4
1 + x4

2 + x4
3 + x4

4 + · · · = 0 (2.4)

there is at least one holomorphic curve at any point in the complex structure moduli space,

namely the intersection of the quartic polynomial with any hyperplane. This phenomenon
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Projective space W (x1, x2, x3, x4) Minimal model RS RS,ST

P(1,1,1,1)[4] x4
1 + x4

2 + x4
3 + x4

4 (2, 2, 2, 2) 3 3

P(1,1,1,3)[6] x6
1 + x6

2 + x6
3 + x2

4 (4, 4, 4, 0) 3 3

P(1,1,2,2)[6] x6
1 + x6

2 + x3
3 + x3

4 (4, 4, 1, 1) 4 6

P(1,1,2,4)[8] x8
1 + x8

2 + x4
3 + x2

4 (6, 6, 2, 0) 4 5

P(1,2,2,5)[10] x10
1 + x5

2 + x5
3 + x2

4 (8, 3, 3, 0) 4 8

P(1,1,4,6)[12] x12
1 + x12

2 + x3
3 + x2

4 (10, 10, 1, 0) 4 4

P(1,2,3,6)[12] x12
1 + x6

2 + x4
3 + x2

4 (10, 4, 2, 0) 6 9

P(1,3,4,4)[12] x12
1 + x4

2 + x3
3 + x3

4 (10, 2, 1, 1) 6 12

P(2,3,3,4)[12] x6
1 + x4

2 + x4
3 + x3

4 (4, 2, 2, 1) 6 14

P(1,2,6,9)[18] x18
1 + x9

2 + x3
3 + x2

4 (16, 7, 1, 0) 6 8

P(1,4,5,10)[20] x20
1 + x5

2 + x4
3 + x2

4 (18, 3, 2, 0) 8 12

P(1,3,8,12)[24] x24
1 + x8

2 + x3
3 + x2

4 (22, 6, 1, 0) 8 10

P(2,3,10,15)[30] x15
1 + x10

2 + x3
3 + x2

4 (13, 8, 1, 0) 10 14

P(1,6,14,21)[42] x42
1 + x7

2 + x3
3 + x2

4 (40, 5, 1, 0) 12 12

Table 1: The 14 different K3 that correspond to Fermat polynomials in weighted projective space.

The last two entries denote the rank of the charge lattice spanned by RS-branes and by RS and

single transposition branes. As argued below in section 3.3.2, the last entry minus two (two charges

correspond to D0- and D4-branes) should equal the rank of the Picard lattice at a generic point in

the complex structure moduli space of the corresponding surface.

generalises immediately to all hypersurface equations in weighted projective space, where

one can always consider the intersection with a hyperplane. In some examples the generic

rank of the Picard lattice may be enhanced even further. Consider for example the model

P(1,1,2,2)[6]. The embedding weighted projective space has a Z2 orbifold singularity with

fixed point (0, 0, x3, x4). The Z2 singularity is resolved by an exceptional P1. It intersects

with the hypersurface in the 3 points that are defined by the equations x1 = x2 = 0 and

x3
3 + x3

4 = 0. This enhances the rank of the generic Picard lattice by 3. Altogether, the

rank of the Picard lattice is therefore 4 at generic points in the complex structure moduli

space for this example. Note that there is one 2-cycle that is inherited from the embedding

space: it corresponds to the combination of the three spheres, which is invariant under

x3 7→ exp(2πi/3)x3, which permutes the 3 singular points on the hypersurface. There are

therefore 4 different brane charges, two D2, the D0 and D4 that the hypersurface inherits

directly from the embedding space.

More generally, whenever two weights have a greatest common divisor m by which

the other two weights are not divisible, the embedding projective space acquires an orb-

ifold singularity which locally has the form C
2/Zm. Its resolution requires m − 1 P1s

whose intersection pattern is given by the Am−1 Dynkin diagram. This means that any

such singularity contributes m − 1 2-brane charges to the charge lattice that can be ob-

tained by pull back from the embedding projective space. To determine the contribution

to the Picard lattice of the hypersurface, one has to take into account that, as in the

example above, the hypersurface might intersect the exceptional set in several points.

– 7 –
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Each of them gives a contribution to the Picard lattice. We will interpret these gen-

eral features of the Picard lattice from the matrix factorisation point of view in section

3.

2.2 The orbifold line

Generically, the points in moduli space where a exact conformal field theory description

is known are isolated. For example, for the above theories we only have a conformal field

theory description (namely a Gepner model) for the unperturbed superpotential. There is,

however, one interesting exception to this: since the (2)4 model is in fact equivalent to the

Z4 toroidal orbifold [10], there is a two-parameter family of orbifold theories all of which

describe K3. The corresponding subspace of the moduli space has recently been identified

to be [13]

x4
1 + x4

2 + x4
3 + x4

4 + ax2
1x

2
2 + bx3

3x
2
4 = 0 . (2.5)

The orbifold theory will be described in more detail in section 4; the detailed mapping

between a and b and the relevant parameters of the orbifold theory was given in [29, 13].

For this subspace of the moduli space we therefore have a good understanding of both

the conformal field theory and the matrix factorisation approach. We should thus be able

to compare the results from both points of view. The matrix factorisation description will

be given in the following section, where we will in particular show that certain D-branes

are obstructed against modifying the bulk parameters a and b. In section 4 we will identify

the corresponding boundary states in the orbifold conformal field theory and reproduce

these obstructions also from that point of view.

3. The matrix factorisation point of view

In this section we shall analyse the above theories from the matrix factorisation perspec-

tive. This approach was proposed in unpublished form by Kontsevich, and the physical

interpretation of it was given in [4 – 9], for a review see also [30]. We shall first collect very

briefly some basic facts about matrix factorisations that we shall need later on.

3.1 Fundamentals

Kontsevich has proposed that D-branes in a Landau-Ginzburg models are given by matrix

factorisations of the superpotential,

Q2 = W · 1 , (3.1)

where Q is a square matrix with polynomial entries that satisfies

σQ + Qσ = 0 . (3.2)

If we choose the grading operator σ to be diagonal, Q is of the form

Q =

(
0 J

E 0

)
with EJ = JE = W · 1 . (3.3)

– 8 –
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Two factorisations (E, J) and (E′, J ′) are considered equivalent if they are related by a

similarity transformation with invertible matrices with polynomial entries,

E′ = U1EU−1
2 , J ′ = U2JU−1

1 . (3.4)

The spectrum of open strings between D-branes determined by factorisations (E, J) and

(E′, J ′) is then given by the cohomology of the boundary BRST operator Q. From a physics

point of view, the factorisation condition can be derived by varying the Landau-Ginzburg

action and cancelling the boundary terms [4, 5]. This analysis also confirms that Q is the

correct boundary BRST operator. The proposal got further support by relating the results

from the matrix factorisation perspective with those obtained in conformal field theory; in

particular, this was done for the N = 2 minimal models in [5, 7, 31] and for tensor products

of minimal models in [32, 33]. Finally, the matrix factorisation results for toroidal theories

were shown to be in agreement with geometrical expectations [34 – 36].

We are particularly interested in Landau-Ginzburg orbifolds of the form (2.3). In this

situation, the orbifold group ZH gives an additional finer grading. This grading correspond

to the choice of a representation γM such that Q satisfies

γM Q(ωwixi) γ−1
M = Q(xi) , (3.5)

where ω = e
2πi

H . There are H different choices for γM that are labelled by M .

Given a matrix factorisation Q, the charge of the corresponding D-brane under the RR

ground states can be calculated using the formulas derived in [6, 37, 38]. RR ground states

in Landau-Ginzburg orbifolds arise both from the twisted and untwisted sector and can

be counted using the techniques of [39]. The RR ground states from the untwisted sector

correspond to polynomials in the Landau-Ginzburg fields and have the property that the

U(1) charges of the left and right moving part are equal, qL = qR. In the simplest case,

where the weights do not have divisors (such as for the quartic in P3), there is exactly one

RR ground states from each twisted sector.

For the general case, let n = 0, . . . ,H − 1 label the twisted sectors. In each sector,

consider only the untwisted fields xi such that nwi/H ∈ Z, and set all twisted fields to

zero. Let φα
n =

∏
i(xi)

αi be a basis of the untwisted chiral ring Jn = C[xi]/∂Wn such that∑
i αiwi/H =

∑
i(

1
2 − wi/H). The RR ground states |n;α〉 are obtained by acting with

φα
n on the unique state |n; 0〉. (For n = 0 this representation corresponds to (4.7) — see

below.) Note that not all of the RR ground states obtained in this way survive the orbifold

projection, which has to be imposed for all twists. The RR charge of Q with respect to a

surviving RR ground state |n;α〉 is given by [6, 37]

ch(Q)(|n;α〉) =
1

(2πi)rn

∮
dx1 . . . dxrn

φα
nStr[γn

M∂1Qn . . . ∂rn
Qn]

∂1Wn . . . ∂rn
Wn

. (3.6)

Here rn is the number of untwisted fields, and Wn and Qn are the superpotential and the

factorisation with all twisted fields set to zero. The supertrace is the trace taken with the

grading operator σ included, i.e. Str[·] = tr[σ·].
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In the context of the correspondence between Landau-Ginzburg models and Calabi-

Yau manifolds, one would expect that one can associate to any matrix factorisation an

element of the derived category of coherent sheaves of the Calabi-Yau manifold. The

derived category of coherent sheaves and the category of graded matrix factorisations have

to be equivalent since both are believed to describe the topological category of B-type

branes [40, 37], which is supposed to decouple from the Kaehler moduli. One way to

investigate this correspondence would be to analyse matrix factorisations in the context

of the linear sigma-model. Since this has not yet been done to date, we will use a result

of Orlov [41], who established mathematically a correspondence between the ‘category of

singularities’ DSg, and the category of matrix factorisations (with the equivalence relations

mentioned above). The category of singularities DSg is a certain quotient of the derived

category of coherent sheaves that depends only on the singularity and would be empty on

a smooth manifold.

Orlov’s equivalence was formulated for the case of the un-orbifolded Landau-Ginzburg

model. Given a matrix factorisation W = EJ one interprets the two factors as maps

between projective modules over the polynomial ring C[xi] — in our case these modules

are simply C[xi]
⊕n for a factorisation in terms of n×n matrices E, J . One then associates

to a factorisation the object coker J , which naturally lives on W = 0. This assignment

associates to a single transposition brane in an unorbifolded two variable model the set

x1 − ηx2 = 0. It has been shown [32] that the geometric intersection numbers can be

matched with the intersection numbers derived from matrix factorisations (as well as with

those obtained from permutation boundary states in conformal field theory). For the case

of graded matrix factorisations in Landau-Ginzburg orbifolds, the idea is then that linear

factorisations still describe the geometric object coker J for one choice of the representations

γM ; the D-branes corresponding to the other representations are images of that brane under

the Landau-Ginzburg monodromy. For a number of examples this assignment has been

verified for linear transposition and tensor product factorisations in [40, 32]. This was done

by using alternative methods [42] to calculate the large volume charges corresponding to

the branes at the Landau-Ginzburg point. In this paper, we will use these ideas to guess

linear matrix factorisations corresponding to certain geometric D-branes.

3.2 Basic factorisations

The factorisations we shall mainly consider in this paper can be obtained as graded tensor

products Q1 ¯ Q2 [40, 12] of two simple classes of factorisations. The first construction

involves a single factor theory of the form W = xh, for which we can construct a factori-

sation as

Q(x) =

(
0 x

xh−1 0

)
. (3.7)

The branes that correspond [40] to the tensor product of four such factorisations are the

RS D-branes with L = 0 [43]. It follows from (3.6) that these branes do not couple to RR

charges in the untwisted sector.
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The other construction involves two factors of the form W (x1, x2) = xh
1 + xh

2 . Let η

denote an hth root of −1, then we have the factorisation [40]

Qη =

(
0 (x1 − ηx2)∏

η′ 6=η(x1 − η′x2) 0

)
. (3.8)

It was shown in [32] (see also [33]) that the corresponding branes are permutation branes

with L = 0 [44]. More generally, these factorisations can also be constructed for the case

that h1 and h2 have a non-trivial common factor (but are not equal) [11]. The corresponding

branes should then be generalised permutation branes similar to those considered in [45]

in the case of group manifolds, [see [46] for a first attempt to formulate a related class of

branes for coset theories].

If we tensor this permutation factorisation to two tensor factorisations, we get a trans-

position brane, denoted for example by (34). Once again, it only couples to charges in the

twisted sectors. One can, of course, also consider tensoring with another permutation brane

whenever the divisibility properties of the weights allow this. We will call the resulting

branes double transposition branes and denote them by (12)(34), etc.

3.3 Deformations

For the following it will also be important to understand how the B-type D-branes behave

under deformations of the complex structure. In particular, we will consider deforma-

tions of the Landau-Ginzburg superpotential by suitable quasihomogeneous polynomials

of appropriate weight V , W 7→ Ŵ (ψ) = W + ψV , where ψ denotes the parameter of the

deformation. If Q is a factorisation of W , then we ask whether there is Q̂(ψ) = Q+f(ψ)δQ

with f(0) = 0 such that Q̂ is a factorisation of Ŵ . If such a Q̂(ψ) exists (at least in the

neighbourhood of ψ = 0) we shall say that the D-brane can be extended for the deformation

described by V .

3.3.1 Global deformations

There exist some classes of branes that can be extended for all possible deformations. In

particular, this is the case for the tensor factorisations that correspond to RS branes. In

order to see this we note that we can write any superpotential Ŵ as

Ŵ = x1 F1 + x2 F2 + x3 F3 + x4 F4 , (3.9)

where the F are suitable polynomials. In fact, we have

Fi =
wi

H

∂Ŵ

∂xi
. (3.10)

We can thus define factorisations that are 4-fold tensor products of the factorisations xiFi.

These factorisations are the deformations of the standard tensor factorisations. Indeed, as

we approach the Gepner point, we have Fi → xhi−1
i , and these factorisations reduce to the

tensor branes.
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In a similar way, we can extend single transposition branes. For definiteness we assume

that w3 = w4 and define

L1 = x1 , L2 = x2 , L3 = x3 − αx4 . (3.11)

Inserting L1 = L2 = L3 = 0 into the superpotential and imposing Ŵ = 0, one derives an

equation of degree k3 + 2 for α,

Ŵ (0, 0, α, 1) = 0 . (3.12)

For each solution the Nullstellensatz then gives us a factorisation Ŵ = L1F1+L2F2+L3F3.

At the Gepner point, the solutions for α are given by the (k3 + 2)th roots of −1 and the

factorisation reduces to the transposition brane, as required.

Of particular interest is the case where w3 = w4 6= 1. In this case we are geometri-

cally in the situation that the projective space acquires a singularity and the hypersurface

intersects with it for generic complex structure deformations. The intersection points are

then exactly given by L1 = L2 = L3 = 0, where α solves (3.12).

We should note that in both cases, the factorisations that can be deformed do not

couple to the charges in the untwisted sector (that are in turn in one-to-one correspondence

to the polynomial deformation moduli). We shall see later on that this is indeed a necessary

condition for the deformation to be possible.

3.3.2 Enhancement of the Picard lattice

As we have seen in section 2, the rank ρ of the Picard lattice is enhanced for hypersurfaces

in weighted projective space. We would now like to understand this enhancement from the

point of view of matrix factorisations.

Let us first discuss the part of the charge lattice that is inherited from the embedding

space. For this, we consider the tensor product factorisations that correspond to the RS-

branes. As we have just seen, these factorisations exist for arbitrary deformations of the

superpotential. We expect on general grounds [47 – 50] that these branes carry precisely

all the charges that can be obtained as pullbacks from the embedding space. If this is so,

then it follows from the discussion in section 2 that their rank should be

rk(tensor) = 3 +
∑

i<j

(
gcd(wi, wj) − 1

)
. (3.13)

Here, the 3 represents the D0, D4 and generic D2 charge, and the other contribution comes

from the resolution of the singularities of the embedding weighted projective space. We

have verified that this relation is indeed true for all 14 examples; the relevant rank is given

in the penultimate column of table 1. This gives good support to the assertion that the

tensor factorisations account precisely for the charges that can be understood in terms of

the embedding projective space.

As we have seen, a Zm singularity of the embedding space can lead to an enhancement

of the rank of the Picard lattice of the hypersurface by a multiple of m−1 if the hypersurface

intersects the exceptional locus in more than one point. For example, the rank of the

Picard lattice of the example P(1,1,2,2)[6] was shown to have 4 as a lower bound, where 3
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holomorphic curves come from replacing the points z1 = z2 = 0, z3 − ηz4 = 0, η3 = −1

by P1’s. It is now natural to believe that these additional charges can be obtained as

matrix factorisations of type (34), where η appears as the parameter in the (34) part of

the factorisation.

In order to check this claim we have verified that for each η, the rank of the charge

lattice of the tensor and (34) factorisations is bigger by one than that of the tensor fac-

torisations. Furthermore, if we consider two different (34) factorisations with different η,

the rank is increased by 2, but considering all three different values does not increase the

rank any further (since the symmetric combination of the three η values is already part of

the tensor charges). Furthermore, as we have just seen, all of these factorisations can be

defined for arbitrary complex structure deformations. This explains from a matrix factori-

sation point of view that for P(1,1,2,2)[6] ρ ≥ 4 at a generic point in the complex structure

moduli space.

We have studied these phenomena also for the other examples. The rank of the charge

lattice spanned by the (34) branes, where lcm(w3, w4) = m is (for fixed value of η) always

by m − 1 bigger than the rank of the tensor product lattice. Furthermore, including all

values of η we obtain the generic part of the Picard lattice that arises because the K3

surface is embedded in the weighted projective space under consideration. The rank of the

charge lattice that is generated by these factorisations is given in the last column of table 1;

this agrees always with what is expected based on the geometric analysis of section 2.

3.4 An infinitesimal analysis

In section 3.3 we considered special factorisations that could be globally deformed. We

would now like to investigate under which conditions a given factorisation can at least be

infinitesimally deformed. Given Q0, we want to find a Q(ψ) with Q(ψ) → Q0 for ψ → 0

such that

Q(ψ)2 = W + ψV (3.14)

at least for small ψ. We make the analytic ansatz [12]

Q(ψ) =
∑

n

ψnQn , (3.15)

and obtain to first order

{Q0, Q1} = ψV . (3.16)

As V · 1 is Q0-closed, this reduces to a cohomology problem: if V is not exact, then Q0 is

obstructed and cannot be continued. At higher order we obtain similar conditions: since

{Q0, Qn} = −
n−1∑

k=1

QkQn−k (3.17)

the right hand side must be Q0-closed as well. In principle, obstructions may occur at

higher orders too, but we have not found any examples where higher order obstructions

were important.
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The above ansatz (3.15) implies that the deformation is analytic, but it is conceiv-

able that non-analytic deformations could exist. In particular, holomorphicity implies that

there is only one smooth family of brane deformations, but physically there are certainly

situations where more than a single deformation could compensate for a given bulk per-

turbation. In such cases we would expect non-analytic behavior of Q(ψ). We can make a

more general ansatz by making ψ an analytic function of a parameter φ:

(
∑

n

φnQn

)2

= W + ψ(φ)V = W +
∑

n

cnφn · V . (3.18)

However, this new ansatz is in fact only more general than (3.15) if the cohomology of Q0

is non-trivial. (Physically, this corresponds to Q0 having fermions in its self-spectrum.)

While we cannot solve the obstruction problem in general, we can at least give a

necessary condition for the analytic deformation to be unobstructed.

3.4.1 A necessary condition for unobstructed deformations

We can make a general statement about the conditions that allow a brane to be continued:

if Q can be continued analytically under the deformation V , then Q is not charged with

respect to the corresponding RR ground state φ.

To prove this we start out with (3.6) in the untwisted sector. First of all, it is clear that

if r is odd, the charge is always zero. We can thus assume that there is an even number of

factors (as is always the case for the K3 examples). The charge is given by

ch(Q) =

∮
dx1 . . . dxr

V Str[∂1Q . . . ∂rQ]

∂1W . . . ∂rW
=

∮
dx1 . . . dxr

Str[V 1∂1Q . . . ∂rQ]

∂1W . . . ∂rW

=

∮
dx1 . . . dxr

Str[{Q,A}∂1Q . . . ∂rQ]

∂1W . . . ∂rW
, (3.19)

where we have used that V must be exact if Q can be continued. Consider now terms of

the form Q∂Q. Since Q∂Q = ∂(Q2) − ∂QQ and Q2 = W1,

∮
dx1 . . . dxr

Str[∂1Q . . . ∂k(Q
2) . . . ∂rQ]

∂1W . . . ∂rW
=

∮
dx1 . . . dxr

∂iWStr[∂1Q . . . . . . ∂rQ]

∂1W . . . ∂iW . . . ∂rW

and ∂iW cancels. At all Gepner points, W = xh1
1 + . . . + xhr

r , so xi only appears in the

numerator. The residue integral
∮

dxi it thus zero. (This argument works also if W is

not of the particular form given above, see [6].) This calculation shows that ∂Q and Q

anticommute in the supertrace. Pulling Q through all the factors and using (anti-)cyclicity

of the supertrace, we see that QA cancels with AQ and ch(Q) is thus zero.

This proof works for the twisted sector as well. In this case it suffices to realise that

Qn commutes with γn
M . This follows from the fact that

γn
M Qn(ωnwixi) = Qn(xi) γn

M . (3.20)

But according to the definition of Qn, only those xi appear for which ωnwi = 1. It is also

clear that if we insert any fermionic boundary operator F such that {Q,F} = 0, the charge
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remains zero. If there is an odd number of factors now, this is trivial, otherwise F just

provides the additional sign that makes the trace disappear.

We note in passing that the globally deformed branes that we discussed in section 3.3.1

do indeed satisfy this condition.

3.4.2 A counterexample

In the previous subsection we have seen that a necessary condition for the brane Q not to

be obstructed under the deformation V is that Q is not charged under V . One may wonder

whether this condition is also sufficient, but this is not true. As an explicit counterexample

consider the deformation of the (12)(34) brane of the quartic under the deformation x2
1x

2
3.

If we choose the two values of η to be η1 and η2, Q(1) = Qη1(x1, x2) ¯ Qη2(x3, x4), then

their charge is

ch(Q(1))(x2
1x

2
3) =

η3
1η

3
2

16
. (3.21)

Now define Q(2) = Qη1(x1, x2) ¯ Q−η2(x3, x4), and consider the superposition Q of these

two factorisations

Q =




0 0 J1 0

0 0 0 J2

E1 0 0 0

0 E2 0 0


 . (3.22)

Because of (3.21), this factorisation is then uncharged under x2
1x

2
3. Nevertheless it cannot

be analytically deformed. If it could, we would have to find a matrix

X =




0 0 A B

0 0 C D

E F 0 0

G H 0 0


 (3.23)

consisting of polynomial block matrices A,B, . . . ,H such that

{Q,X} = x2
1x

2
3 1 . (3.24)

This yields eight (matrix) equations. The first and the fifth one are

J1E + AE1 = x2
1x

2
31

E1A + EJ1 = x2
1x

2
31 . (3.25)

These are, however, the very equations we find if we want to deform Q(1) itself. On the

other hand, we know that Q(1) is charged under x2
1x

2
3 and thus not analytically deformable,

so (3.25) has no solution. This shows that Q is not analytically deformable either.

3.5 Quartics on the orbifold line

As an interesting application of the above techniques we now want to study the line of

‘very attractive’ quartics (2.5) [13] from a matrix factorisation perspective. First we need

to collect some information regarding the RR charges.
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It is easy to see that there are 21 monomial deformations of the quartic superpotential

that have integer U(1) charge in the closed string theory. These correspond to 21 RR ground

states in the untwisted sector. 19 of these monomials are of charge 1 — the corresponding

RR ground states have charge 0 and can couple to both A-type and B-type branes. The

remaining two integer charge monomials 1 and x2
1x

2
2x

2
3x

2
4 correspond to RR ground states

which have qL = qR 6= 0 and hence can couple only to A-type branes. Furthermore, each

of the twisted sectors gives rise to one RR ground state each that can couple to B-type

branes.

Our first task is to find a set of matrix factorisations that span the full B-type charge

lattice. At the Gepner point, such a set is given by the double transposition branes (12)(34),

(13)(24), (14)(23), which span a charge lattice of rank 22, accounting for the D0, D4 and

20 D2 branes. This in particular verifies that the Picard lattice at the Gepner point has

maximal rank (namely 20). In the following, we want to analyse the deformations of these

factorisations along the orbifold line.

3.5.1 Deformations of the Gepner point

It follows from our general discussion above that the D0-brane factorisation (34) and the

tensor factorisation can be extended over the full complex structure moduli space, and

therefore in particular, also along the orbifold line. These branes only couple to the three

twisted RR charges, and thus account for the three generic RR-charges (that correspond

to the D0, the D4, and the one D2-brane).

Next we observe that the (12)(34) factorisations can also be continued to arbitrary

points on the orbifold line. To see this, we make the ansatz

L1 = x2 − α1x1 , L2 = x3 − α2x4 , (3.26)

and insert L1 = L2 = 0 into the superpotential. To obtain a factorisation W = L1F1+L2F2

from this ansatz, we require that the superpotential vanishes on the locus L1 = L2 = 0. In

the case at hand this yields the following condition on the parameters

1 + α4
1 + aα2

1 = 0 , 1 + α4
2 + bα2

2 = 0 ,

which is solvable for αi for any value of a, b. In particular, this means that we have found

a deformed (12)(34) factorisation for any value of a, b.

By the same argument we also see that the (13)(24) branes with

x1 − η1x3 = 0 , x2 − η2x4 = 0 (3.27)

can be extended to those a and b that satisfy aη2
1η

2
2 + b = 0. For general parameters a, b

however, (13)(24) and (14)(23) are obstructed, as follows immediately from the fact that

they are charged under the corresponding deformations. On the other hand, it is possible

to construct a factorisation of the deformed superpotential by writing it as

W (x) =
(
x2

1 +
a

2
x2

2

)2
+

(
x2

3 +
b

2
x2

4

)2

︸ ︷︷ ︸
h=2

+

(
1 − a2

4

)
x4

2 +

(
1 − b2

4

)
x4

4

︸ ︷︷ ︸
h=4

. (3.28)
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We can then consider the tensor product of the permutation factorisation of the first two

and the last two terms. For a → 0, b → 0, these factorisations reduce to tensor products

of permutation factorisations in x2
1, x

2
3 and x2, x4 respectively. We can similarly combine

x2
1, x

2
4 and x2, x3, etc.; there are four different constructions of this type, and each accounts

for two different charges. Together with the (12)(34) and the RS branes, they then span a

charge lattice of rank 20.

Thus we have found a set of factorisations that can be deformed along the whole

orbifold line and whose charges generate a sublattice of rank 20. As follows from the

analysis of section 3.4.1, all of these factorisations are uncharged under x2
1x

2
2 and x2

3x
2
4, as

is indeed also readily verified. The lattice of B-type D-branes that are uncharged under

these two charges has rank 20, and thus the above constructions account already for all of

it.

On the other hand, it also follows from our analysis of section 3.4.1, that any fac-

torisation that is charged with respect to x2
1x

2
2 or x2

3x
2
4 cannot be analytically deformed.

Furthermore, the (13)(24) brane for example does not have a fermion in its self-spectrum,

and thus also the non-analytic solution of the type (3.18) cannot exist. This seems to

predict that the corresponding D-brane in the orbifold theory should also be obstructed.

We shall explain in detail in the next section that this is indeed so.

4. The conformal field theory description

In order to understand in more detail how the geometric and the matrix factorisation

point of view fit together it is useful to study the quartic K3 surface (and its orbifold

line) directly in conformal field theory. The conformal field theory we are interested in

has two equivalent descriptions: it can be described as the Gepner model corresponding

to the four-fold tensor product of four N = 2 minimal models with k = 2; on the other

hand, the theory is also equivalent to the Z4 orbifold of a T 4-torus. The equivalence

involves in fact mirror symmetry. In the following we shall first explain briefly the relevant

Gepner model construction, and then describe in more detail the torus orbifold realisation

and the correspondence between the two descriptions. Finally we shall describe some of

the D-branes from both points of view, and explain how they deform under the Kaehler

deformations of the orbifold theory.

4.1 The Gepner model

The Gepner description is standard [51], so we shall be fairly brief in the following. (A

more comprehensive introduction to Gepner models can be found in [52]; our conventions

are explained in more detail for example in [43, 32].)

The Gepner model of interest is the Z4-orbifold of the four-fold tensor product of k = 2

minimal models (each having c = 3/2, so that the total central charge is ctot = 6). As

usual we label the representations of the bosonic subalgebra of the N = 2 superconformal

algebra by triples (l,m, s) of integers, where l takes the values l = 0, 1, 2, and m and s

are defined modulo 8 and 4, respectively. The three integers have to obey l + m + s = 0

– 17 –



J
H
E
P
0
6
(
2
0
0
6
)
0
1
5

mod 2. Furthermore there is an identification

(l,m, s) ∼ (2 − l,m + 4, s + 2) . (4.1)

The conformal weight h and the U(1)-charge q of the highest weight state in the represen-

tation (l,m, s) are given by

h(l,m, s) =
l(l + 2) − m2

16
+

s2

8
mod Z, q(l,m, s) =

s

2
− m

4
mod 2Z. (4.2)

Representations with s even belong to the Neveu-Schwarz sector, while those with s odd

belong to the Ramond sector.

The space of states of the full theory is of the form

4⊗

i=1

H(li,mi+n,si) ⊗ H̄(li,mi−n,s̄i) , (4.3)

where n = 0, 1, 2, 3 denotes the twisted sector, and si (and s̄i) are all either even (NS) or

all odd (R). The labels mi are subject to the integrality condition

4∑

i=1

mi

4
∈ Z . (4.4)

Finally, we may impose the type 0B GSO-projection which requires that

4∑

i=1

(si

2
+

s̄i

2

)
∈ 2Z . (4.5)

Of particular importance are the RR ground states of this theory. Ramond ground

states are characterised by the property that their conformal weight h equals c/24. One

can easily show that the ground state of the sector (l,m, s) is a Ramond ground state if

it is of the form (l, l + 1, 1) or (l,−l − 1,−1). The above Gepner model possesses 24 RR

ground states; in each of the three twisted sectors (n = 1, 2, 3) there is one RR ground

state which is the state

(n − 1, n, 1)⊗4 ⊗ (n − 1,−n,−1)
⊗4

. (4.6)

The remaining 21 RR ground states come from the untwisted n = 0 sector; if we associate

to the R ground state representations

(0, 1, 1) ↔ 1 , (1, 2, 1)i ↔ xi , (2, 3, 1)i ↔ x2
i , (4.7)

where the index i refers to the ith factor, then we have the state 1, x2
1x

2
2x

3
3x

2
4, as well as

the 19 monomials in xi that are of degree 4.

4.2 The torus orbifold

The torus in question is simply the orthogonal product of four circles, which initially all

have the self-dual radius and vanishing B-field. For the following it is convenient to write

this 4-torus as T 4 = T 2 × T 2. The Z4 orbifold acts by a counterclockwise rotation by 90

degrees in the first T 2, and by a clockwise rotation by 90 degrees in the second. We denote

the four real directions by yi with i = 1, 2, 3, 4, and introduce complex coordinates in the
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usual way: z1 = y1 + iy2 and z2 = y3 + iy4. The Z4 action is then

g : z1 7→ e
2πi

4 z1 , z2 7→ e−
2πi

4 z2 . (4.8)

We denote the fermionic fields by χi and χ̃i, where i = 1, 2, 3, 4. The corresponding complex

fields are then

ψ1 =
1√
2

(
χ1 + iχ2

)
ψ̄1 =

1√
2

(
χ1 − iχ2

)
ψ2 =

1√
2

(
χ3 + iχ4

)
ψ̄2 =

1√
2

(
χ3 − iχ4

)

(4.9)

with similar formulae for the right-moving fields, ψ̃1, etc.

The momentum ground states of the torus are labelled by four momentum numbers

ni, i = 1, 2, 3, 4, and four winding numbers wj, j = 1, 2, 3, 4. For the ith direction the left-

and right-moving momenta are then

(
pi

L, pi
R

)
=

(
ni

2Ri
+ wiRi,

ni

2Ri
− wiRi

)
, (4.10)

where initially all Ri = 1√
2

in our conventions. On the ground states, the Z4 action maps

(n1, w1, n2, w2, n3, w3, n4, w4) 7→ (−n2,−w2, n1, w1, n4, w4,−n3,−w3) . (4.11)

This symmetry requires only that R1 = R2 and R3 = R4, but neither needs to take the

self-dual value. Thus there is a two (real)-dimensional space of deformations that preserve

the orbifold symmetry. One should expect on general grounds that this is only part of a

two (complex)-dimensional space of deformations, and this is indeed so. One easily sees

that one can also switch on an arbitrary B-field in either of the two T 2: if we concentrate

on the first T 2, then the momenta are of the form

(
p1

L, p2
L|p1

R, p2
R

)
=

( n1

2R
+ w1R + Bw2,

n2

2R
+ w2R − Bw1

∣∣∣
n1

2R
− w1R + Bw2,

n2

2R
− w2R − Bw1

)
. (4.12)

It is then easy to see that the spectrum is invariant under the Z4-action

(p1
L, p1

R) 7→ (p2
L, p2

R) 7→ (−p1
L,−p1

R) 7→ (−p2
L,−p2

R) . (4.13)

In fact, this action still corresponds precisely to the action (on the first two coordinates)

of (4.11).

In the following we shall mainly concentrate on the theory where the B-field vanishes

and all the radii take the self-dual value Ri = 1√
2
; this is the theory that corresponds

precisely to the Gepner model (2)4. Unless mentioned otherwise this is what we shall call

the torus orbifold in the following.

4.3 A partial dictionary

Before proceeding we shall match a few low-lying states in order to understand how the

identification works. In the untwisted NS-NS sector of the torus orbifold, the lowest lying

states is the vacuum with h = h̄ = 0, as well as four states of h = h̄ = 1/4. The latter
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are the Z4-orbits of the states for which the only non-vanishing momentum and winding

number is n1 = 1, or w1 = 1 or n3 = 1 or w3 = 1. In the first (g) and third (g3) twisted

sector of the torus orbifold, there are 4 fixed points each, and each of them has (in the NS-

NS sector) ground state energy h = h̄ = 1/4. (There are 10 Z4-orbifold invariant Z2-fixed

points in the second (g2) twisted sector, but their ground state energy is higher.) In total

the torus orbifold therefore has 12 NS-NS states with h = h̄ = 1/4.

In the N = 2 orbifold (the Gepner model), all of these states appear in the untwisted

(n = 0) sector; the vacuum obviously corresponds to the ground state of the trivial repre-

sentations, and the states with h = h̄ = 1/4 are the ground states in the sectors

(1,±1, 0) ⊗ (1,∓1, 0) ⊗ (0, 0, 0) ⊗ (0, 0, 0) , (4.14)

where the two non-trivial representations may appear in any two of the four factors (there

are six different possibilities), and the two signs are correlated. [In the above we have only

written the left-moving representations; since n = 0 the right-moving representations are

simply equal.]

4.3.1 RR ground states

It is also instructive to understand how the 24 RR ground states of the N = 2 Gepner

model that were described at the end of the previous section appear in the torus orbifold.

In the untwisted sector of the torus orbifold we have eight fermionic zero modes, namely

χi
0 and χ̃i

0, or the corresponding complex modes defined by (4.9). We combine them into

creation and annihilation operators by defining

ψ±
1 =

1√
2

(
ψ1

0 ± iψ̃1
0

)
=

1

2

(
χ1

0 + iχ2
0

)
± i

1

2

(
χ̃1

0 + iχ̃2
0

)

ψ̄±
1 =

1√
2

(
ψ̄1

0 ± i ˜̄ψ1
0

)
=

1

2

(
χ1

0 − iχ2
0

)
± i

1

2

(
χ̃1

0 − iχ̃2
0

)

ψ±
2 =

1√
2

(
ψ2

0 ± iψ̃2
0

)
=

1

2

(
χ3

0 + iχ4
0

)
± i

1

2

(
χ̃3

0 + iχ̃4
0

)

ψ̄±
2 =

1√
2

(
ψ̄2

0 ± i ˜̄ψ2
0

)
=

1

2

(
χ3

0 − iχ4
0

)
± i

1

2

(
χ̃3

0 − iχ̃4
0

)
.

We define |0〉RR to be the state that is annihilated by the − modes, i.e.

ψ−
j |0〉RR = ψ̄−

j |0〉RR = 0 , j = 1, 2 . (4.15)

The space of RR ground states is thus generated by the action of the +-modes from this

state. Since there are four creation operators, the space of RR ground states (before orbifold

projection) is 16-dimensional.

The state |0〉RR can be taken to be invariant under the orbifold action, while the

ψ-modes transform as

g ψ±
1 g−1 = e

2πi

4 ψ±
1 , g ψ̄±

1 g−1 = e−
2πi

4 ψ̄±
1 ,

g ψ±
2 g−1 = e−

2πi

4 ψ±
2 , g ψ̄±

2 g−1 = e
2πi

4 ψ̄±
2 . (4.16)
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Of the 16 RR ground states, there are therefore six states that are invariant under the Z4

orbifold action: in addition to |0〉RR and ψ+
1 ψ̄+

1 ψ+
2 ψ̄+

2 |0〉RR they are

ψ+
1 ψ̄+

1 |0〉RR , ψ+
1 ψ+

2 |0〉RR , ψ̄+
1 ψ̄+

2 |0〉RR , ψ+
2 ψ̄+

2 |0〉RR . (4.17)

Two linear combinations of these six states can only couple to B-type branes, two can

only couple to A-type branes, while the remaining two can couple to either. (A more

explicit analysis of the N = 2 charges of these states is spelled out in appendix A.2.) The

relevant A-type branes are the mirror of the D0- and the D4-brane, as well as of two B-type

D2-branes that contribute to the Picard lattice.

The remaining 18 RR charges arise from the twisted sector. In order to describe

the twisted sector states it is useful to think of the Z4 orbifold in two steps as the Z2

orbifold of a Z2 orbifold. The first Z2 orbifold inverts all four torus coordinates, while the

second Z
′
2 orbifold acts as a rotation by 90 degrees in the two tori (clockwise in the first,

and anti-clockwise in the second). The first Z2 orbifold has, as usual, 16 fixed points at
1
2 (y1, y2, y3, y4), where each yi is either 0 or 1. Only four of these fixed points are invariant

under the full Z4 orbifold action, namely (0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1) and (1, 1, 1, 1).

Thus we have four RR ground states in each of the g, g2 and g3-twisted sectors, giving

together 12 RR ground states. This also fits together with the geometric description of

the orbifold: at each Z4 singular point the geometry looks locally like C2/Z4, which is a

singularity of type A3. Its resolution introduces 3 exceptional divisors whose intersection

pattern is determined by the corresponding Cartan matrix.

The other 12 Z2-fixed points form orbits of length 2 under the additional Z
′
2 action,

leading to 6 Z2 fixed points of the full Z4 = Z2 × Z
′
2 orbifold. (Each of these introduces

a single exceptional divisor.) They therefore only contribute 6 states to the g2 twisted

sector. In total we therefore have 18 twisted RR ground states. All of them correspond to

2-cycles that are part of the Picard lattice. Together with the two charges that appear in

the untwisted sector we thus see that the rank of the Picard lattice of the mirror is indeed

maximal, ρ = 20.

The counting of the RR charges is obviously valid at any point on the orbifold line.

One might wonder which of the 2-cycles are special, so that they cannot be deformed easily

in the matrix factorisation picture. In fact, one would expect that the 18 2-cycles from

the blow-up contribute in a straight-forward manner at any point along the orbifold line.

Indeed, this is in analogy to our discussion of hypersurfaces in weighted projective space

where the 2-cycles coming from the resolution contribute everywhere in moduli space. On

the other hand, the remaining 2-cycles that come from the torus do depend more critically

on the radii. As we shall see, this expectation will indeed be borne out.

4.3.2 Quantum symmetries

Finally, it is very instructive to identify the quantum symmetries of the orbifolds on both

sides. The quantum symmetry of the torus orbifold acts on the Gepner model as

e
iπ

2
(m1+m2−s1−s2) . (4.18)
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In fact, this identification can be read off from the geometric point of view that will be

described below in section 4.4. The states from the g0 (untwisted) sector of the orbifold

theory thus correspond to the polynomials

g0 ←→ 1 , x2
1x

2
2 , x2

3x
2
4 , x2

1x
2
2x

2
3x

2
4 , (4.19)

and to the (n = 1) and (n = 3) twisted RR ground states. The four RR ground states of

the g-twisted sector are

g1 ←→ x1x3x
2
4 , x2x3x

2
4 , x1x4x

2
3 , x2x4x

2
3 , (4.20)

while the corresponding statement for the g3-twisted sector is

g3 ←→ x2
1x2x3 , x2

1x2x4 , x2
2x1x3 , x2

2x1x4 . (4.21)

All other RR ground states come from the g2 twisted sector.

Conversely, we can also identify the quantum symmetry of the N = 2 orbifold that

appears in the construction of the Gepner model, on the torus side: as will become clear

from the detailed analysis of the appendix A.2 it seems to be given by the Z4 rotation by

90 degrees that only acts on the first T 2, but leaves the second T 2 invariant. The three

RR ground states in the Gepner model that appear in the twisted sectors (n = 1, 2, 3) then

correspond to the three RR ground states of the torus orbifold that have eigenvalues e
2πin

4

under this 90 degree rotation. The state with n = 2 corresponds to a specific Z4-invariant

combination of Z2-fixed points from the g2 sector of the torus orbifold, while the n = 1

and n = 3 states arise from the untwisted sector of the torus orbifold. In fact one easily

sees that
(n = 1) (0, 1, 1)⊗4 ⊗ (0,−1, 1)

⊗4 ←→ ψ+
1 ψ+

2 |0〉RR

(n = 3) (2, 3, 1)⊗4 ⊗ (2,−3, 1)
⊗4 ←→ ψ̄+

1 ψ̄+
2 |0〉RR .

(4.22)

This identification will prove very useful below.

4.4 The Inose point of view

The equivalence of the Z4 orbifold line with certain perturbations of the Gepner quartic

can also be understood [13] as an extension of a purely geometric result due to Inose [57].

This point of view also ties in nicely with the identification of the the D-branes of the two

theories.

Inose discovered that the K3 surface obtained as a resolution of the toroidal Z2 orbifold

is equivalent to a geometric Z2 orbifold of the quartic K3 at the Gepner point. As before,

the Z2 action on the torus is given by inversion of all 4 coordinates, whereas the Z2 action

on the hypersurface acts as

σ : (x1, x2, x3, x4) → (−x1,−x2, x3, x4) . (4.23)

This orbifold action has 8 fixed points (x1, x2, 0, 0) with x4
1 + x4

2 = 0, and (0, 0, x3, x4) with

x4
3 + x4

4 = 0, introducing 8 exceptional P1’s. The lines

x1 − ηx2 = 0 , x3 − ηx4 = 0 , (4.24)
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of which one would expect to have a Landau-Ginzburg description in terms of the corre-

sponding matrix factorisations (12)(34), are invariant under the orbifold action. According

to Inose, the 16 lines (4.24) correspond to the 16 P1’s required to resolve the Z2 singularities

of T 4/Z2.

To apply Inose’s result to the relation between the toroidal Z4 orbifold and the quartic

hypersurface we remember that in conformal field theory any abelian orbifold possesses a

quantum symmetry by means of which one can undo the orbifold. This quantum symmetry

acts on the twisted sectors by phase multiplication, and if we orbifold the orbifold theory by

this quantum symmetry we reobtain the original theory. In the case at hand, one would like

to divide out the orbifolded quartic by its quantum symmetry to re-obtain the quartic. [13]

identifies this quantum symmetry on the toroidal side: it is precisely the Z
′
2 that enhances

the Z2 given by coordinate inversion to the Z4 action (4.8).

This can now help us to understand to which twisted sectors (of the torus theory) the

branes of the (2)4 model should couple. Let us first note that σ acts on the states in the

Gepner model as

σ : ⊗(li,mi, si) → (−1)l1+l2 ⊗ (li,mi, si) . (4.25)

As mentioned before, the lines (4.24) on the quartic hypersurface are invariant under the

Z2 action induced by σ. This means that also the corresponding matrix factorisations are

invariant. In conformal field theory language, the boundary states corresponding to the

(12)(34) transposition branes are thus invariant under the σ-orbifold operation, and need

to be ‘resolved’ by adding a contribution from the twisted sector, with a choice of sign

reflecting the freedom to pick a representation on the Chan-Paton labels.

Going back to the covering theory by dividing out by the quantum symmetry, these

resolved boundary states then form orbits under the quantum symmetry and need not

be resolved again. On the torus side, the same should happen, and the corresponding

boundary states should therefore only couple to the Z2 fixed points points, but not to the

g or g3 twisted sector of the torus orbifold. In fact, this is in agreement with the above

identification (4.20) and (4.21) since it follows from (3.6) that the (12)(34) factorisations

are not charged under these monomials.

On the other hand the (13)(24) matrix factorisations are not invariant under σ, and

therefore form orbits under σ-orbifold action. In turn, they therefore need to be resolved

under the quantum symmetry orbifold. On the torus side, we should therefore expect that

the corresponding boundary states do couple to the g and g3 twisted sectors; again this is

in agreement with the identifications (4.20), (4.21) and the charge formula (3.6).

4.5 Some simple D-branes

Having understood at least in parts the dictionary between the Gepner model and the

torus orbifold description, we now want to explain the torus description of certain classes

of branes in Gepner models. In particular, we want to study the tensor product (RS)

branes [43] and the permutation branes [44] whose matrix factorisation description was

explained in [40, 53, 32, 54, 33]. For a related theory, namely T 2/Z4, this analysis was

recently performed in [55] (see also [56]).
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4.5.1 The tensor branes

The simplest D-branes of the Gepner model are the RS D-branes that correspond to tensor

products of rank 1 factorisations of the separate factors. In analogy to the correspondence

between pure D6 branes and their images under the Gepner monodromy and the Li = 0

RS states one expects that these states correspond geometrically to D4 branes wrapped

on the quartic hypersurface. Via mirror symmetry, they are mapped to D2 branes on the

torus orbifold. To be more precise, these D2 should have one Neumann and one Dirichlet

direction in each torus. In fact, one easily sees that the RS-branes do not couple to the

twelve NS-NS states of (4.14); the RS-branes therefore cannot be D0- or D4-branes and

thus must be D2-branes.

The RS D-branes only couple to the RR ground states in the twisted sectors (n 6= 0).

Given the identification (4.22) as well as the explicit formulae for these boundary states

(see for example [32] whose conventions we employ in the following) we thus know that the

RS branes with Li = 0 couple to

|RS〉〉0 '
(
e−

πiM̂

4 ψ+
1 ψ+

2 + e
πiM̂

4 ψ̄+
1 ψ̄+

2

)
|0〉RR . (4.26)

Since M̂ is even, these D-branes therefore only couple to differences and sums of these two

torus states. With the identification of the previous section, it is furthermore clear that

these are the only RR ground states of the untwisted sector of the torus orbifold to which

these D-branes couple. (The other such states arise in the n = 0 sector of the N = 2

orbifold, to which the RS-branes do not couple.)

In order to determine their orientation we rewrite (4.26) in terms of the real coordi-

nates. We find

(
ψ+

1 ψ+
2 + ψ̄+

1 ψ̄+
2

)
|0〉RR = (χ+

1 χ+
3 − χ+

2 χ+
4 )|0〉RR

i
(
ψ+

1 ψ+
2 − ψ̄+

1 ψ̄+
2

)
|0〉RR = (χ+

2 χ+
3 + χ+

1 χ+
4 )|0〉RR , (4.27)

where χ+
i = χi + iχ̃i. In the former case (which corresponds to M̂ = 0 mod 4), the branes

are the superposition of branes with Neumann directions along y1 and y3, and branes

with Neumann directions along y2 and y4. In the latter case the relevant D2-branes have

Neumann directions along y2 and y3, and Neumann directions along y1 and y4. These

superpositions are then Z4-orbifold invariant.

4.5.2 The transposition branes

The next simplest class of D-branes are the transposition branes corresponding to the

permutation (ij), where i 6= j. These branes couple to the same RR ground states as the

tensor branes. Their coupling is however different: taking into account the subtle factor

in the relative overlaps to the tensor branes (see eq. (5.7) of [32]), we find that the branes

(again with Li = 0) couple instead of (4.26) to

|(ij)〉〉0 ' 1√
2

(
e−

πi(M̂+1)
4 ψ+

1 ψ+
2 + e

πi(M̂+1)
4 ψ̄+

1 ψ̄+
2

)
|0〉RR . (4.28)
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Since M̂ is even, these branes therefore couple to different linear combinations; in terms of

the real coordinates, the ground state is proportional to

(
ψ+

1 ψ+
2 + iψ̄+

1 ψ̄+
2

)
|0〉RR = (1 + i)

[
χ+

1 (χ+
3 + χ+

4 ) + χ+
2 (χ+

3 − χ+
4 )

]
|0〉RR(

ψ+
1 ψ+

2 − iψ̄+
1 ψ̄+

2

)
|0〉RR = (1 − i)

[
χ+

1 (χ+
3 − χ+

4 ) − χ+
2 (χ+

3 + χ+
4 )

]
|0〉RR .

These branes are therefore superpositions of D2-branes that have Neumann directions along

y1 and y3 ± y4, and branes with Neumann directions along y2 and y3 ∓ y4.

4.5.3 The double transposition branes

The last simple class of branes corresponds to the product of two transpositions, i.e. to

the permutation (ij)(kl) with i, j, k, l all mutually distinct. These branes also couple to

untwisted (n = 0) RR ground states, and may therefore also couple to additional RR

ground states of the untwisted (g0) torus orbifold. As regards the two RR ground states

coming from n = 1 and n = 3, their coupling is now (again for Li = 0)

|(ij)(kl)〉〉0 ∼ 1

2

(
e−

πi(M̂+2)
4 ψ+

1 ψ+
2 + e

πi(M̂+2)
4 ψ̄+

1 ψ̄+
2

)
|0〉RR . (4.29)

The more detailed interpretation however depends on which permutation is considered.

The case (12)(34): In this case it follows from the identification of (4.20) and (4.21)

that the (12)(34) branes do not couple to any RR ground states of the first (g1) or third

(g3) twisted sector of the orbifold. This implies that they cannot be Z4-fractional branes,

and thus that they must correspond to the superpositions of at least two D2-branes. The

orientation of the two D2-branes is then as described for the tensor branes in 4.4.1. [The

tension of the (12)(34) branes is smaller by a factor of two than that of the tensor branes;

this suggests that the latter are actually superpositions of four such branes, while the

(12)(34) only involve two D2-branes.]

The cases (13)(24) and (14)(23): In either case, the identification of (4.20) and (4.21)

now implies that these branes do couple to the first (g1) and third (g3) twisted sector of

the orbifold. Thus they should correspond to ‘fractional’ branes. We also know that the

(ij)(kl) branes may couple to additional RR ground states in the untwisted sector of the

torus orbifold. In fact, since the set of all (double) transposition branes account for all RR

charges, at least some of the (13)(24) and (14)(23) branes must couple to these states. From

the point of view of the orbifold description, the relevant RR ground states are identified

in appendix A.2. This then suggests that the RR ground states of some of these boundary

states are proportional to

|B1〉〉0 ' (1 + ψ+
1 ψ+

2 ) (1 + ψ̄+
1 ψ̄+

2 )|0〉RR

|B2〉〉0 ' (ψ+
1 + ψ̄+

2 ) (ψ+
2 + ψ̄+

1 )|0〉RR .
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These ground states satisfy the gluing conditions

(χ1 − iχ̃3)|B1〉〉0 = 0 (χ2 + iχ̃4)|B1〉〉0 = 0

(χ3 + iχ̃1)|B1〉〉0 = 0 (χ4 − iχ̃2)|B1〉〉0 = 0 ,

(χ1 + iχ̃3)|B2〉〉0 = 0 (χ2 − iχ̃4)|B2〉〉0 = 0

(χ3 + iχ̃1)|B2〉〉0 = 0 (χ4 − iχ̃2)|B2〉〉0 = 0 .

(4.30)

The corresponding D2-branes lie diagonally across the two T 2s and are by themselves Z4-

invariant (as should be the case for Z4-fractional branes!). On the other hand, their area

is twice that of one of the two D2-branes that appears in the description of the (12)(34)

brane. This is then in accord with the fact that the tension of the (12)(34) brane agrees

with that of the (13)(24) and the (14)(23) branes.

4.6 Deforming D-branes

So far we have (partially) identified the D-branes of the orbifold theory at the Gepner point

with certain classes of matrix factorisations. In terms of the orbifold theory, it is now not

difficult to describe how these D-branes behave as we vary the radii or the B-fields.

First of all, it is clear that nothing much of interest happens for the branes that

correspond to the tensor factorisations (section 4.5.1), the single transposition factorisation

(section 4.5.2), or the (12)(34) branes. In all of these cases the gluing conditions involve

the two T 2’s separately, and the structure of these D-branes is pretty insensitive to changes

of the radii or the B-field.

The situation is however different for the |B1〉〉 and |B2〉〉 branes since they lie diagonally

across the two T 2s. As we change the radii of the two T 2’s, we generically change their

ratio, which has a significant effect on the behaviour of these branes. A priori it is not

clear how we should ‘continue’ these D-branes as we vary the closed string parameters, but

there are at least two natural points of views that we can take.

According to the first point of view, we can simply insist on preserving the same gluing

conditions (4.30) (as well as the corresponding gluing conditions for the bosons) as we vary

the radii and the B-fields. By construction, the corresponding D-branes will then continue

to couple to the relevant RR ground states, and will continue to satisfy the correct N = 2

gluing conditions. However, as is well known [14], the structure of the corresponding D-

branes will depend dramatically on the precise ratio of the radii and the values of the

B-fields. Consider for example the ||B1〉〉 brane that is characterised by the bosonic gluing

conditions corresponding to (4.30)

(a1
n − ã3

−n)||B1〉〉 = 0 , (a2
n + ã4

−n)||B1〉〉 = 0 ,

(a3
n + ã1

−n)||B1〉〉 = 0 , (a4
n − ã2

−n)||B1〉〉 = 0 .
(4.31)

For the original theory for which R1 = R2 = 1√
2

and B1 = B2 = 0, we have for example

Ishibashi states on the momentum ground states for which the only non-vanishing momen-

tum and winding numbers are n3 = w1 or w3 = −n1 or n4 = −w2 or w4 = n2. (Obviously

the Z4-invariant boundary state will require that we sum over suitable such combinations of
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Ishibashi states.) As we change the radii R1 and R2 or switch on the B-fields, the Ishibashi

state whose ground state has only non-vanishing momentum and winding numbers equal

to n3 = w1 6= 0 say, does typically not satisfy the zero mode part of (4.31) any more.

Thus the set of Ishibashi states that contribute will depend crucially on the closed string

parameters. As a consequence, the same will be true for their tension, etc. This fact is also

easy to understand geometrically: fixing the gluing conditions means that we fix the angles

with which the D-brane is oriented in the 13- and 24-planes. As we change the ratio of the

radii, the number of times the brane wraps around the torus in the 13 and 24 directions

changes erratically.

In order to avoid this erratic behaviour, we can adopt the second point of view, namely

that we should modify the gluing conditions as we change the radii or switch on a B-field.

For example, for the case when we change the radii R1 and R2, we can consider
(

a1
n

a3
n

)
=

(
cos 2θ sin 2θ

− sin 2θ cos 2θ

)(
ã1
−n

ã3
−n

)
,

(
a2

n

a4
n

)
=

(
cos 2θ − sin 2θ

sin 2θ cos 2θ

)(
ã2
−n

ã4
−n

)
, (4.32)

where 2R1R2 = tan θ. It is straightforward to check that the states with n3 = w3 6= 0, etc.

then satisfy the zero mode part of (4.32) for arbitrary values of θ (not just θ = π/4). In

order to understand the geometric meaning of these modified gluing conditions, we rewrite

them in terms of complex coordinates. If we define α
(1)
n = a1

n + ia2
n, etc, we find

α
(1)
n = cos 2θ α̃

(1)
−n + sin 2θ ˜̄α

(2)
−n ᾱ

(1)
n = cos 2θ ˜̄α

(1)
−n + sin 2θ α̃

(2)
−n

α
(2)
n = cos 2θ α̃

(2)
−n − sin 2θ ˜̄α

(1)
−n ᾱ

(2)
n = cos 2θ ˜̄α

(2)
−n − sin 2θ α̃

(1)
−n

(4.33)

In order to preserve the usual world-sheet N = 1 algebra, the fermions have to follow suit,

i.e.

ψ
(1)
n = i

(
cos 2θ ψ̃

(1)
−n + sin 2θ ˜̄ψ

(2)
−n

)
ψ̄

(1)
n = i

(
cos 2θ ˜̄ψ

(1)
−n + sin 2θ ψ̃

(2)
−n

)

ψ
(2)
n = i

(
cos 2θ ψ̃

(2)
−n − sin 2θ ˜̄ψ

(1)
−n

)
ψ̄

(2)
n = i

(
cos 2θ ˜̄ψ

(2)
−n − sin 2θ ψ̃

(1)
−n

) (4.34)

Given the explicit expressions for the N = 2 and N = 4 supercharges of the appendix (see

(A.4) and (A.6)), we can now deduce the gluing conditions for the supercharges and the

ŝu(2)1 currents. Explicitly we find that

(
Ja

n + g J̃a
−n g−1

)
||B1〉〉 = 0 , g =

(
cos 2θ − sin 2θ

sin 2θ cos 2θ

)
. (4.35)

[Here we have chosen the convention that the Lie algebra generators are defined by

t+ =

(
0 1

0 0

)
, t− =

(
0 0

1 0

)
, t3 =

(
1 0

0 −1

)
.] (4.36)

For all values of θ, the modified boundary state preserves the N = 4 superconformal

algebra. However, we can ask whether there is an N = 2 subalgebra of the N = 4 algebra

for which the gluing conditions are A-type. In particular, the U(1) current K of this N = 2
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subalgebra would then have to satisfy the gluing condition
(
Kn − K̃−n

)
||B〉〉 = 0 . (4.37)

Given (4.35) this means that K, regarded as an element of the Lie algebra of su(2), satisfies

gKg−1 = −K . (4.38)

It is easy to see that such a K only exists if cos 2θ = 0, i.e. for 2R1R2 = 1. Thus unless

2R1R2 = 1 (for B1 = B2 = 0), it is not possible to extend the boundary state ||B1〉〉 in this

manner while preserving N = 2 A-type supersymmetry. On the other hand, if 2R1R2 = 1

(for B1 = B2 = 0) is satisfied, one can easily see that the usual N = 2 subalgebra continues

to satisfy an A-type gluing condition. A similar analysis also works for other modifications

of the gluing conditions, as well as for ||B2〉〉.
These findings reflect now very nicely the results we obtained from the matrix factori-

sation point of view. There we saw that for generic deformations parametrised by a and b

it was not possible to extend the (13)(24) and (14)(23) factorisations. However, there were

special directions for which an extension was possible: for example, as was mentioned in

section 3.5.1 we could extend the (13)(24) factorisation if a and b satisfy

aη2
1η

2
2 + b = 0 , (4.39)

and a similar condition holds for the (14)(23) factorisations. In terms of the orbifold theory

the condition (4.39) means that the two tori have the same Kaehler parameter (up to an

SL(2, Z) transformation). This follows from the fact that the relation between a and the

Kaehler parameter ρ1 of the first torus is [29]

j(ρ1) =
1

27 · 4
(a2 + 12)3

(a2 − 4)2
, (4.40)

with an identical relation between b and the Kaehler parameter ρ2 of the second torus.

In particular, the two Kaehler parameters only depend on a2 and b2, respectively, and

thus (4.39) implies that j(ρ1) = j(ρ2). This is in particular the case if 2R1R2 = 1 (at

B1 = B2 = 0). Thus the special unobstructed deformations correspond to each other.

It would be interesting to have a more precise dictionary between the different matrix

factorisations (including the values of η1 and η2, etc.) and the orbifold D-branes. This

would allow one to check these identifications in even more detail.

5. Conclusions

In this paper we have studied B-type D-branes on K3 from three different points of view:

using geometrical methods (section 2), with the help of the matrix factorisation approach

(section 3), and for the T 4/Z4 orbifold line in conformal field theory (section 4). We have

shown that the results we obtained from these different points of view fit very well together.

In particular, we have been able to understand the generic rank of the Picard lattice for

K3’s that are hypersurfaces in weighted projective space both from a geometrical point of
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view and using matrix factorisation techniques. For the case of the T 4/Z4 orbifold line we

have furthermore managed to identify in some detail the different matrix factorisation with

boundary states in the orbifold conformal field theory. Furthermore, we could understand

from both points of view why certain D-branes are obstructed against deformations of the

bulk theory.

More generally, we have found a necessary criterion for when a given matrix factori-

sation can be analytically extended under a bulk deformation: this is only possible if the

factorisation is uncharged under the RR field that corresponds to the bulk deformation. It

would be good to understand this condition directly in conformal field theory.

Among other things, our results demonstrate convincingly that the matrix factorisation

approach is a very powerful method to study D-branes at generic points in the moduli space

where the traditional conformal field theory techniques are unavailable. One may hope to

be able to push this further and deduce more global properties about D-branes on Calabi-

Yau manifolds. This should, in particular, be possible for D-branes on K3 where we have

extended supersymmetry.
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A. The RR ground states of the torus theory

In this appendix we collect various facts about the RR ground states of the torus orbifold.

In particular, we exhibit the underlying N = 2 and N = 4 superconformal symmetry in

the R sector of this theory. In the second subsection we explain the dictionary between the

torus RR ground states and the corresponding states in the Gepner model in some detail.

A.1 The N = 2 and N = 4 algebras

To fix notation, let us first consider a single T 2 with c = 3. The left-moving (complex)

bosonic and fermionic modes are denoted by αm, ᾱm, ψn and ψ̄n. The bosonic modes

satisfy the commutation relations

[αm, αn] = 0 = [ᾱm, ᾱn] , [αm, ᾱn] = mδm,−n , (A.1)

and the fermionic modes the anti-commutation relations

{ψm, ψn} = 0 = {ψ̄m, ψ̄n} , {ψm, ψ̄n} = δm,−n . (A.2)
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The two (chiral) R ground states carry N = 2 quantum numbers h = 1/8 and q = ±1/2,

and are mapped into one another by the action of the fermionic zero modes

ψ0

∣∣∣∣
1

8
,−1

2

〉
= 0 ψ0

∣∣∣∣
1

8
,
1

2

〉
=

∣∣∣∣
1

8
,−1

2

〉

ψ̄0

∣∣∣∣
1

8
,
1

2

〉
= 0 ψ̄0

∣∣∣∣
1

8
,−1

2

〉
=

∣∣∣∣
1

8
,
1

2

〉
. (A.3)

Here the N = 2 generators are defined, in terms of the free bosons and fermions, as (see

for example [58])

Ln =
∑

m

: αn−mᾱm : +
1

2

∑

m

(2m − n) : ψ̄n−mψm : +
1

8
δn,0

Jn =
∑

m

: ψ̄n−mψm : −1

2
δn,0

G+
n =

√
2

∑

m

αn−mψ̄m

G−
n =

√
2

∑

m

ᾱn−mψm .

(A.4)

One easily checks that they satisfy the correct N = 2 algebra with c = 3,

[Lm, Ln] = (m − n)Lm+n + c
12(m3 − m)δm,−n

[Lm, Jn] = −nJm+n[
Lm, G±

n

]
=

(
1
2m − n

)
G±

m+n

[Jm, Jn] = c
3mδm,−n[

Jm, G±
n

]
= ±G±

m+n{
G+

m, G−
n

}
= 2Lm+n + (m − n)Jm+n + c

3(m2 − 1
4)δm,−n{

G+
m, G+

n

}
=

{
G−

m, G−
n

}
= 0 .

Furthermore, they have the correct N = 2 eigenvalues on the above states. [Note that

the normal ordering for the fermions is defined by : ψ̄mψn := ψ̄mψn for m ≤ n and

: ψ̄mψn := −ψnψ̄m for m > n.] It is also obvious that the above states are annihilated by

the zero modes G±
0 , as they must be.

For the case of interest to us, we have two such tori, and thus in fact an N = 4 algebra.

We denote the relevant free field modes by α
(i)
n and ψ

(i)
n , where i = 1, 2. The additional

generators of the N = 4 algebra are the generators J±
n that enhance the u(1) current

Jn ≡ J
(1)
n + J

(2)
n to an ŝu(2)1 algebra

J+
n =

∑

m

: ψ̄
(1)
n−m ψ̄(2)

m : , J−
n = −

∑

m

: ψ
(1)
n−m ψ(2)

m : . (A.5)

These generators are obviously orbifold invariant. Note that the normalisation of the ŝu(2)1
generators is slightly unusual: they satisfy

[Jm, J±
n ] = ± 2J±

m+n

[J+
m, J−

n ] = Jm+n + m δm,−n

[Jm, Jn] = 2m δm,−n .
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In addition we have two more supercharges G′±
n that are defined by

G′+
n =

√
2

∑

m

(
ψ̄

(1)
n−m ᾱ(2)

m − ψ̄
(2)
n−m ᾱ(1)

m

)

G′−
n =

√
2

∑

m

(
ψ

(1)
n−m α(2)

m − ψ
(2)
n−m α(1)

m

)
. (A.6)

Together with G±
n ≡ G

±(1)
n + G

±(2)
n they then generate the N = 4 algebra [59]; in addition

to the above commutation relation of the N = 2 generators we have

{G±
m, G′±

n } = ∓2(m − n)J±
m+n {G±

m, G′∓
n } = 0

[Lm, G′±
n ] =

(m

2
− n

)
G′±

m+n [Jm, G′±
n ] = ±G′±

m+n

[J±
m, G±

n ] = [J±
m, G′±

n ] = 0

[J±
m, G∓

n ] = ±G′±
m+n [J±

m, G′∓
n ] = ∓G±

m+n

{G′+
m, G′−

n } = 2Lm+n + (m − n)Jm+n + 2(m2 − 1/4)δm,−n . (A.7)

In the following we shall mostly work with the two N = 2 algebras corresponding to

the two tori. The RR ground states are then characterised by their eigenvalues with respect

to the two different U(1)-charges. We shall denote these states by |±,±〉, where

ψ
(1)
0 |+,±〉 = |−,±〉 ψ

(1)
0 |−,±〉 = 0

ψ
(2)
0 |±,+〉 = ∓|±,−〉 ψ

(2)
0 |±,−〉 = 0

ψ̄
(1)
0 |+,±〉 = 0 ψ̄

(1)
0 |−,±〉 = |+,±〉

ψ̄
(2)
0 |±,+〉 = 0 ψ̄

(2)
0 |±,−〉 = ∓|±,+〉 .

(A.8)

Note the signs in the second and fourth line — these are a consequence of the fact that the

fermionic zero modes of the first and second torus anti-commute. In the full theory we then

have such states for the left- and the right movers; these will be denoted by |±,±〉⊗|±,±〉.
The action of the right-moving modes ψ̃

(j)
0 and ˜̄ψ

(j)
0 are given by the same relations as

above. (Note though that the right-moving fermionic modes also anti-commute with the

left-moving fermionic modes, and thus one has to be careful about relative signs!)

A.2 The identification with the Gepner model states

Having set up notation, we can now characterise the RR ground state |0〉RR that is anni-

hilated by the modes

ψ−
j |0〉RR = ψ̄−

j |0〉RR = 0 , j = 1, 2 , (A.9)

where

ψ±
j =

1√
2

(
ψ

(j)
0 ± iψ̃

(j)
0

)
, ψ̄±

j =
1√
2

(
ψ̄

(j)
0 ± i ˜̄ψ

(j)
0

)
. (A.10)

One easily convinces oneself that, in terms of the above basis,

|0〉RR =
(
|+,+〉 ⊗ |−,−〉 − i|+,−〉 ⊗ |−,+〉 + i|−,+〉 ⊗ |+,−〉 − |−,−〉 ⊗ |+,+〉

)
.

(A.11)
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[In writing this formula we have chosen the convention that the state with − is bosonic,

while that with + is fermionic; so we have for example

ψ̃
(1)
0 |−,−〉 ⊗ |+,+〉 = |−,−〉 ⊗ |−,+〉 , ψ̃

(1)
0 |−,+〉 ⊗ |+,+〉 = −|−,+〉 ⊗ |−,+〉

etc.] Furthermore, we can write the various orbifold invariant states that are obtained by

the action of the ψ+ modes from this state in terms of the N = 2 basis. One easily finds

ψ+
1 ψ+

2 |0〉RR = −2|−,−〉 ⊗ |−,−〉 , ψ̄+
1 ψ̄+

2 |0〉RR = −2|+,+〉 ⊗ |+,+〉 . (A.12)

These two states therefore have q = q̄ = −1 and q = q̄ = 1, respectively. Since the torus

description is related by mirror symmetry to the Gepner model description, they must

correspond to states in the Gepner model with q = −q̄ = 1 and q = −q̄ = −1, respectively.

These are precisely the RR ground states in the twisted (n = 1) and (n = 3) sectors, as we

had already argued before.

For the other ground states we obtain

|0〉RR = |+, +〉 ⊗ |−,−〉 − i|+,−〉⊗ |−, +〉 + i|−, +〉 ⊗ |+,−〉 − |−,−〉⊗ |+, +〉
ψ̄+

1 ψ+
1 |0〉RR = |+, +〉 ⊗ |−,−〉 − i|+,−〉⊗ |−, +〉 − i|−, +〉 ⊗ |+,−〉 + |−,−〉⊗ |+, +〉

ψ̄+

2 ψ+

2 |0〉RR = |+, +〉 ⊗ |−,−〉 + i|+,−〉⊗ |−, +〉 + i|−, +〉 ⊗ |+,−〉 + |−,−〉⊗ |+, +〉
ψ̄+

2 ψ+
2 ψ̄+

1 ψ+
1 |0〉RR = |+, +〉 ⊗ |−,−〉 + i|+,−〉⊗ |−, +〉 − i|−, +〉 ⊗ |+,−〉 − |−,−〉⊗ |+, +〉 .

The A-type branes of the torus orbifold (that correspond to the B-type branes of the

Gepner model) should therefore couple to the combinations

|Ψ−
1 〉 = i

(
|−,+〉 ⊗ |+,−〉 − |+,−〉 ⊗ |−,+〉

)
=

1

2

(
|0〉RR − ψ̄+

2 ψ+
2 ψ̄+

1 ψ+
1 |0〉RR

)
(A.13)

and

|Ψ−
2 〉 = i

(
|−,+〉 ⊗ |+,−〉 + |+,−〉 ⊗ |−,+〉

)
=

1

2

(
ψ̄+

2 ψ+
2 |0〉RR − ψ̄+

1 ψ+
1 |0〉RR

)
. (A.14)

This motivates our ansatz for the boundary states |B1〉〉 and |B2〉〉: the ground state of |B1〉〉
couples to |Ψ−

1 〉 (as well as to the states that correspond to (n = 1) and (n = 3)), while

the ground state of |B2〉〉 couples to |Ψ−
2 〉 (as well as again to the states that correspond

to (n = 1) and (n = 3)). The corresponding D-branes should therefore correspond to the

(13)(24) and (14)(23) branes. As we have shown in the main part, D-branes with these

gluing conditions are indeed obstructed under changing the Kaehler parameters of the two

tori separately.

A.3 Spectral flow

The above analysis implies that the orbifold RR ground states that correspond to the two

polynomials x2
1x

2
2 and x2

3x
2
4 are precisely the states

|−,+〉 ⊗ |+,−〉 and |+,−〉 ⊗ |−,+〉 . (A.15)

Indeed, the other two states |+,+〉 ⊗ |−,−〉 and |−,−〉 ⊗ |+,+〉 couple only to B-type

branes in the orbifold theory, and thus to A-type branes in the Gepner model.
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On the other hand, the RR ground states corresponding to x2
1x

2
2 and x2

3x
2
4 must be the

images under spectral flow of the NS-NS sector states that describe the deformation of the

Kaehler parameters of the two tori. These are the states

ψ
(1)
−1/2

˜̄ψ
(1)
−1/2|0〉NSNS , ψ̄

(1)
−1/2ψ̃

(1)
−1/2|0〉NSNS (A.16)

and

ψ
(2)
−1/2

˜̄ψ
(2)
−1/2|0〉NSNS , ψ̄

(2)
−1/2ψ̃

(2)
−1/2|0〉NSNS . (A.17)

As a final consistency check of our identification we can now show that this is indeed the

case. The spectral flow that defines a symmetry of the Gepner model acts symmetrically

on left- and right-movers. In the torus orbifold, the corresponding flow should therefore

act asymmetrically (since in the identification mirror symmetry has been performed). The

first state in (A.15) has h1 = h2 = h̄1 = h̄2 = 1/8 and q1 = −1/2, q2 = 1/2, q̄1 = 1/2,

q̄2 = −1/2. Under spectral flow by one half unit it therefore flows to a NS-NS state with

the quantum numbers h1 = 1/2, h̄1 = 1/2, h2 = 0, h̄2 = 0, q1 = −1, q̃1 = 1, q2 = 0,

q̃2 = 0. This is then precisely one of the states in (A.16). The analysis for the other states

is similar.
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